Analysis and Convergence of a Covolume Approximation of the Ginzburg–landau Model of Superconductivity∗

نویسندگان

  • QIANG DU
  • R. A. NICOLAIDES
  • XIAONAN WU
چکیده

In this paper, we present the mathematical analysis of a covolume method for the approximations of the Ginzburg–Landau (GL) model for superconductivity. A nice feature of this approach is that the gauge invariance properties are retained in discrete approximations based on triangular grids. We also use properties of discrete vector fields to study issues such as the gauge choices and their enforcement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity

The initial-boundary value problem for the time-dependent Ginzburg-Landau equa, tions that model the macroscopic behavior of superconductors is considered. The convergence of finite-dimensional, semidiscrete Galerkin approximations is studied as is a fully-discrete scheme. The results of some computational experiments are presented. Keywords-Superconductivity, Timedependent Ginzburg-Landau equa...

متن کامل

Simplified Ginzburg-landau Models for Superconductivity Valid for High Kappa and High Fields

A formal asymptotic expansion is used to simplify the Ginzburg-Landau model of superconductivity in the limit of large values of the Ginzburg-Landau parameter and high applied magnetic field strengths. The convergence of solutions of the full Ginzburg-Landau equations to solutions of the leading order equations in the hierarchy is demonstrated for both boundary value and periodic problems. The ...

متن کامل

Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity

The authors consider the Ginzburg-Landau model for superconductivity. First some well-known features of superconducting materials are reviewed and then various results concerning the model, the resultant differential equations, and their solution on bounded domains are derived. Then, finite element approximations of the solutions of the Ginzburg-Landau equations are considered and error estimat...

متن کامل

The frozen-field approximation and the Ginzburg–Landau equations of superconductivity

The Ginzburg–Landau (GL) equations of superconductivity provide a computational model for the study of magnetic flux vortices in type-II superconductors. In this article we show through numerical examples and rigorous mathematical analysis that the GL model reduces to the frozen-field model when the charge of the Cooper pairs (the superconducting charge carriers) goes to zero while the applied ...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998